COMMERCIAL SYN BAGS LTD. CARBON FOOTPRINT REPORT 2024

Commercial Syn Bags Ltd.

Commercial House, 3- 4, Jaora Compound, M. Y. H. Road, Indore, Madhya Pradesh, India- 452001.

By Ms. Arati Bhosale GREENEX ENVIRONMENTAL T-71,- 1A/2, Telco Road, General Block, Near Indrayani Corner, above Kotak Mahindra Bank, MIDC, Bhosari, Pune – 411026

INDEX

List of Tables	iii
List of Graphs	iv
List of Figures	iv
CHAPTER 1 INTRODUCTION	1
1.1 Intended user	1
1.2 Standards/ guidelines used	1
1.3 Objectives of Carbon Footprint Study	2
CHAPTER 2 DESCRIPTION OF THE ORGANIZATION/ COMPANY	3
2.1 Project Location	3
2.2 Area Statement	3
2.3 Raw material details	5
CHAPTER 3 METHODOLOGY AND REPORTING BOUNDARIES	8
3.1 Methodology	8
3.1.1 Definition of Calculation Boundaries	8
3.1.2 Selection of Conversion Factors	8
3.1.3 Application of Conversion Factors/ Emission Factors	8
3.2 Operational boundaries considered for the project	9
CHAPTER 4 GHG INVENTORY AND EMISSION QUANTIFICATION	
4.1 Unit 1	
4.1.1 Category 1	
4.1.2 Category 2	
4.1.3 Category 3	

4.1.4 Category 4	
4.1.5 Total emissions	
4.2 Unit 2	
4.2.1 Category 1	
4.2.2 Category 2	
4.2.3 Category 3	
4.2.4 Category 4	
4.2.5 Total emissions	
4.3 Unit 3- SEZ	
4.3.1 Category 1	
4.3.2 Category 2	
4.3.3 Category 3	
4.3.4 Category 4	
4.3.5 Total emissions	
CHAPTER 5 GHG REDUCTION INITIATIVES AND AVOIDED EMISSIONS	
5.1Carbon Sequestration	
5.2 Avoided emissions	
CHAPTER 6 CONCLUSION	24
6.1 Unit 1	24
6.2 Unit 2	
6.3 Unit 3 (SEZ)	
CHAPTER 7 RECOMMENDATIONS	

List of Tables

Table 1 Project location details	3
Table 2 Project area details	3
Table 3 Raw material details	5
Table 4 Boundary conditions	
Table 5 Emissions of Category 1 for unit 1	11
Table 6 Emissions of Category 2 for unit 1	11
Table 7 Emissions of Category 3 for unit 1	12
Table 8 Emissions of Category 4 for unit 1	
Table 9 Total emissions for unit 1	13
Table 10 Emissions of Category 1 for unit 2	15
Table 11 Emissions of Category 2 for unit 2	15
Table 12 Emissions of Category 3 for unit 2	16
Table 13 Emissions of Category 4 for unit 2	17
Table 14 Total emissions for unit 2	17
Table 15 Emissions of Category 1 for unit 3	19
Table 16 Emissions of Category 2 for unit 3	19
Table 17 Emissions of Category 3 for unit 3	20
Table 18 Emissions of Category 4 for unit 3	21
Table 19 Total emissions for unit 3	21
Table 20 Avoided emissions	23

List of Graphs

Graph 1 Representation of emissions by category for unit 1	14
Graph 2 Representation of emissions by category for unit 2	18
Graph 3 Representation of emissions by category for unit 3	22

List of Figures

Figure 1 Images of project site	.4
Figure 2 Process flow diagram	.7

CHAPTER 1 INTRODUCTION

The Carbon Footprint (CF) is a parameter that represents the total emissions of CO_2 and other greenhouse gases (GHG), expressed in mass of CO_2 equivalent, caused directly or indirectly by a product, organization, service or event. The carbon footprint is important to try to quantify the main emission sources and to have a complete picture of the impact of an organization on climate change. It is also the first step to carry out a plan to reduce GHG emissions. The carbon footprint of an organization intends to quantify the GHG emissions implied by the activity flows of an interconnected entity or group of entities.

1.1 Intended user

The client is intended user of this report. This report is solely intended for internal use. The first step towards managing GHG emissions is to measure them. This report provides essential quantitative information on GHG emissions of Comsyn Industries Ltd. This report helps organization to enhance the environmental impacts of GHG quantification/removal which further helps to reduce the GHG emissions as measurement leads to management.

1.2 Standards/ guidelines used

This report is prepared in accordance with the principles set out by ISO 14064 for the quantification and reporting of GHG emissions and removals. ISO 14064 standards and guidance enables companies to measure, manage and report greenhouse gas emissions from their operations and value chains.

This standard details the principles and requirements for the design, development and management of GHG inventories for companies and organizations, and for the reporting of these inventories. It also includes the requirements to determine the GHG emission limits, quantify the emissions and removals of the organization's gases and identify the activities or specific actions of the company in order to improve the management of these gases. ISO 14064 focuses mainly on the facilities and activities subject to the entire organization, conducting a study of GHG emissions associated with the processes carried out by the company, leaving open the possibility of including scope 3 sources. In the case of Comsyn Industries Ltd., the year 2024 has been established as the base or reference year.

1.3 Objectives of Carbon Footprint Study

- To identify the main GHG emission sources of an organization.
- To quantify the emissions in each stage of the process due to fuel consumption, electricity consumption, water consumption, waste water generation and solid waste generation, etc.
- To identify the hotspots of environmental emissions and suggest the reduction measures for the same.
- To find out carbon sequestration mitigations.

CHAPTER 2 DESCRIPTION OF THE ORGANIZATION/ COMPANY

Comsyn is a manufacturer of FIBC, Tarpaulin, Woven Sacks, and BOPP Bags, located in Indore, a city in Central India. It is a member of 50 years old Choudhary Group, which has a wide range of business interests. The company is socially responsible towards its 2000 employees, who are the pillars of the company. Their manufacturing capacity is 14400 M.T. per annum and produces 4-5 million big bags annually. The company is located in the AKVN of the state. The government has provided all infrastructures like electrical power, continuous water supply with purification system, internal road network, external approach road, etc.

2.1 Project Location

Sr. No.	Description	Details	
1	Name of the Project	Commercial Syn Bags Limited	
2	Project type	Manufacturer of FIBC, Tarpaulin, Woven Sacks, and BOPP Bags	
3	Location Indore, Madhya Pradesh		
4 Address of concerned executive (with address& contact)		Amrit Pritam Commercial House, 3-4, Jaora Compound, M.Y.H. Road, Indore - 452 001 (M.P.), India. Phone:91-731-2704007 / 4279525 Email: vtp@comsyn.com	
5	Address	Commercial House, 3-4, Jaora Compound, M.Y.H. Road, Indore - 452 001 (M.P.), India.	
6	Production capacity14400 M.T. per annum		

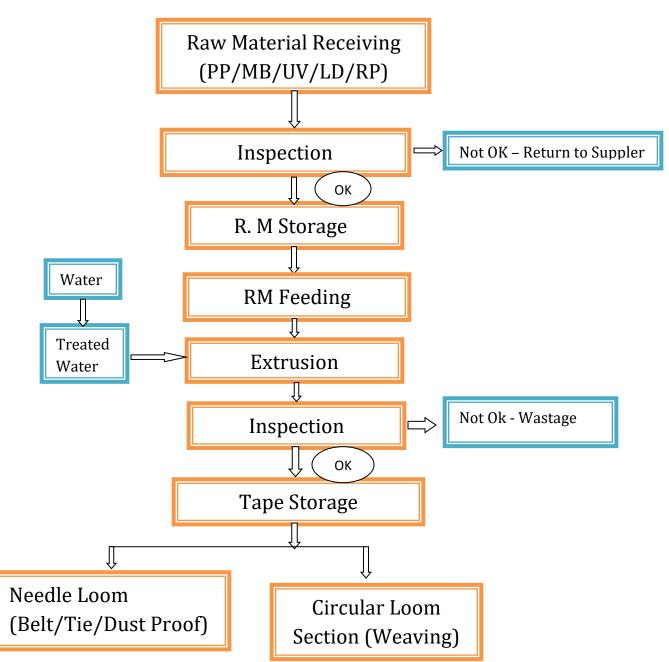
Table 1 Project location details

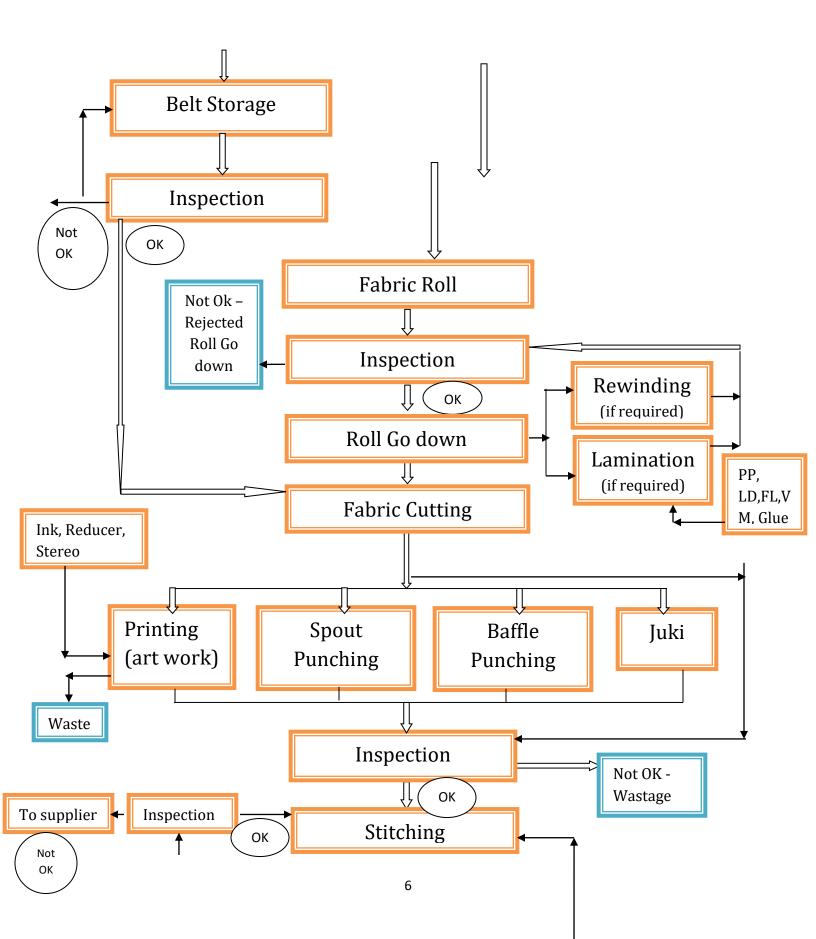
2.2 Area Statement

Sr. No.	Description	Area in Sq. m.
1.	Total plot Area	28658.7
2.	Built Up Area	19498.67
3.	Green Belt Area	6736.5

Table 2 Project area details

(a)


(b) Figure 1 Images of project site


2.3 Raw material details

Sr. No.	Raw Material	Quantity
5111101		(MT/ month)
1	Polypropylene (PP)	770
2	Low Density Poly Ethylene (LDPE)	98
3	Linear Low Density Poly Ethylene (LLDPE)	24
4	Recycled Plastic (RP)	82
5	Master Batch (MB)	103

Table 3 Raw material details

PROCESS FLOW CHART

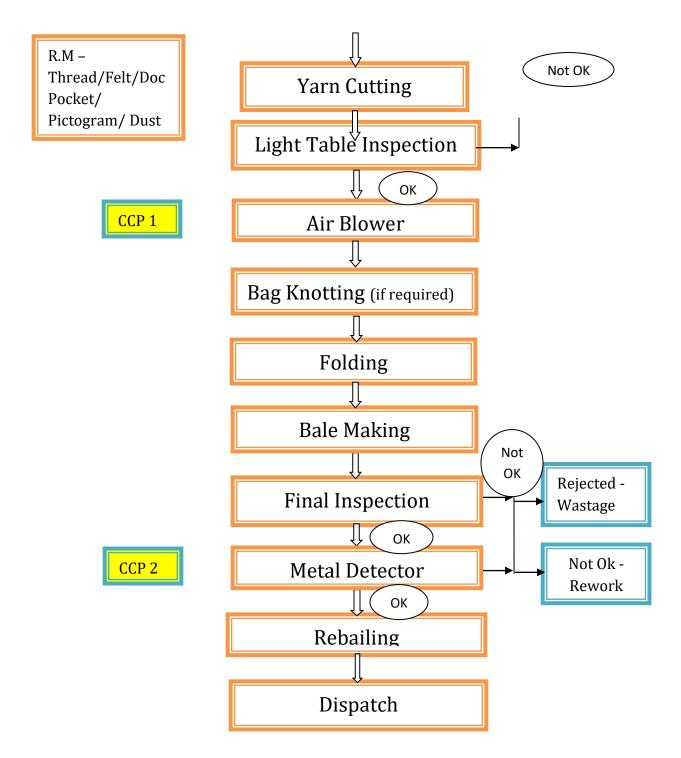


Figure 2 Process flow diagram

CHAPTER 3 METHODOLOGY AND REPORTING BOUNDARIES

3.1 Methodology

3.1.1 Definition of Calculation Boundaries

To start measuring GHG emissions, all the units and departments of the organization will be included in the assessment of emissions.

In setting organizational boundaries, a company selects an approach for consolidating GHG emissions and then consistently applies the selected approach to define those businesses and operations that constitute the company for the purpose of accounting and reporting GHG emissions. For corporate reporting of GHG emissions, two distinct approaches can be taken: Equity Share Approach and Control Approach. The equity share approach accounts for emissions based on financial ownership or economic interest in an operation. The control approach accounts for emissions based on operational or financial control of an operation. The calculation boundaries are given in table 4.

3.1.2 Selection of Conversion Factors

Conversion factors facilitate the calculation of CO₂ emissions by multiplying activity data, expressed in their respective international units and converted into kilograms of carbon dioxide equivalent (Kg CO₂ eq.). CO₂ eq. is the universal unit of measurement to indicate the global warming potential (GWP) of GHGs, expressed in terms of the GWP of one unit of carbon dioxide. We consulted numerous reference sources to select the most appropriate conversion factors, considering certain selection criteria such as accessibility, consistency, and transparency in revisions and updates. Every year, during the first months of the year, conversion factors are reviewed and updated.

GHG (t CO₂ eq.) = aspect quantity data x conversion factor

3.1.3 Application of Conversion Factors/ Emission Factors

Most conversion factors were used directly as defined in the chosen source. In certain instances, suitable factors needed to be calculated specifically, e.g. using average values when slight differences exist among the sources (e.g. hotel stays, rail travel, car trips, and the like) or using ad HOC factors that can be calculated for specific aspects and crosschecked against calculators from relevant sources (e.g. air travel).

Emission Factor: An emission factor is a coefficient which allows converting activity data into GHG emissions. It is the average emission rate of a given source, relative to units of activity or process/processes.

Category		Applicability	
	DIR	ECT GHG EMISSIONS AND REMOVALS	
	1.1 Direct emissions from stationary combustion		
	1.2	Direct emissions from mobile combustion	
	1.3	Direct process emissions and removals arising from industrial	
1		processes	\checkmark
	1.4	Direct fugitive emissions arising from the release of greenhouse	
		gases in anthropogenic systems	
	1.5	Direct emissions and removals from land use, land use change	
		and forestry	
	IND	IRECT GHG EMISSIONS FROM IMPORTED ENERGY	
2	2.1	Indirect emissions from imported electricity	✓
	2.2	Indirect emissions from imported energy	
	IND	IRECT GHG EMISSIONS FROM TRANSPORTATION	
	3.1	Emissions from upstream transport and distribution for goods	
3	3.2	Emissions from downstream transport and distribution for goods	√
3	3.3	Emissions from employee commuting	v
	3.4	Emissions from client and visitor transport	
	3.5	Emissions from business travel	
	IND	IRECT GHG EMISSIONS FROM PRODUCTS USED BY	
	ORG	ANIZATION	
	4.1	Emissions from purchased goods	
	4.2	Emissions from capital goods	
4	4.3	Emissions from disposal of solid and liquid waste	✓
	4.4	Emissions from the use of assets	
	4.5	Emissions from the use of services that are not described in the	
		above subcategories (consulting, cleaning, maintenance, mail	
		delivery, bank, etc.)	
	INDIRECT GHG EMISSIONS ASSOCIATED WITH THE USE OF		
	PRO	DUCTS FROM THE ORGANIZATION	
5	5.1	Emissions or removals from the use stage of the product	NA
	5.2	Emissions from downstream leased assets	
	5.3	Emissions from end of life stage of the product	

3.2 Operational boundaries considered for the project

COMMERCIAL SYN BAGS LTD. CARBON FOOTPRINT REPORT 2024

	5.4 Emissions from investments			
	6 INDIRECT GHG EMISSIONS FROM OTHER SOURCES		NA	

Table 4 Boundary conditions

CHAPTER 4 GHG INVENTORY AND EMISSION QUANTIFICATION

4.1 Unit 1

4.1.1 Category 1

Direct GHG emissions due to fuel consumption

Fuel type	Fuel consumption	Total emissions(kg CO ₂ eq./year)	Total emissions (t CO2 eq. /year)
Diesel	2400 lit/ year	6336	6.336
LPG	3969.504 lit/ year	6180.87	6.180
Total Category 1 emissions (t CO2 eq. /year)			12.516

Table 5 Emissions of Category 1 for unit 1

4.1.2 Category 2

Indirect GHG emissions due to purchased electricity

Category	Consumption (kWh/ year)	Total emissions (kg CO ₂ eq./year)	Total emissions (t CO2 eq. /year)
Electricity	4743240	4325834.88	4325.83
	4325.83		

Table 6 Emissions of Category 2 for unit 1

4.1.3 Category 3

Indirect GHG emissions due to transportation

(a) Employee Commuting

Types of vehicles	No. of vehicles	Distance (Km/day)	Total (Km/year)	Total emission (t CO2 eq. /year)
Car	4	70	25550	18.019
2 wheeler	4	20	29200	1.218
Bus	1	70	102200	13.514
Total emissions due to employee commuting (t CO ₂				32.750
			eq./year)	500

(b) Raw material Transportation

Material type	Means of Transportation	Material transported (t- Km/year)	Total emissions(t CO2 eq. /year)
Raw materials	By road	7314720	1233.262
Total emission	1233.262		

Total emissions due to employee commuting	32.750 t CO ₂ eq./year		
Emissions due to raw material transportation	1233.262 t CO ₂ eq./year		
Total Category 3 Emissions (t CO2 eq. /year)	1251.585 t CO2 eq./year		

Table 7 Emissions of Category 3 for unit 1

4.1.4 Category 4

Indirect GHG emissions from purchased goods and disposal of solid and liquid waste

(a) Purchased goods

Sr. No.	Raw material	Quantity (MT/year)	Total embodied carbon (Kg CO2 eq./ year)	Total embodied carbon (t CO2 eq./ year)	
1	РР	4800000	11424000	11424	
2	LDPE	108000	277560	277.56	
3	LLDPE	60000	139200	139.2	
4	RP	600000	297000	297	
5	MB	720000	4168800	4168.8	
	Emissions from purchased goods (t CO2 eq./year)				

(b) Liquid waste

Category	Quantity (m³/year)	Total emissions (t CO2 eq. /year)
Water supply	7300	1.095
Waste water generation	3285	0.894

Emissions due to waste water generation and water supply (t CO2 eq./year) 1.989
--

(c) Solid waste

Waste	Quantity (ton/ year)	Total emissions (kg CO2 eq. /year)	Total emissions (t CO2 eq. /year)
Solid waste	0.192	4.088	0.004
Emissions due to solid waste generation (t CO ₂ eq./year)			0.004

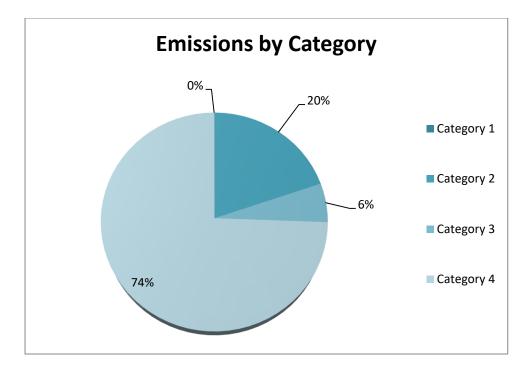

Total Category 4 Emissions (t CO ₂ eq. /year)	16308.553 t CO ₂ eq./year
Emissions due to solid waste generation	0.004 t CO ₂ eq./year
Emissions due to water supply and waste water generation	1.989 t CO ₂ eq./year
Total emissions from purchased goods	16306.56 t CO ₂ eq./year

Table 8 Emissions of Category 4 for unit 1

4.1.5 Total emissions

Category	Emissions (t CO ₂ eq./year)
1	12.517
2	4325.83
3	1266.012
4	16308.553
Total emissions (t CO2 eq. /year)	21912.912

Table 9 Total emissions for unit 1

Graph 1 Representation of emissions by category for unit 1

4.2 Unit 2

4.2.1 Category 1

Direct GHG emissions due to fuel consumption

Fuel type	Fuel consumption	Total emissions(kg CO ₂ eq./year)	Total emissions (t CO2 eq. /year)
Diesel	2400 lit/ year	6336	6.336
LPG	921.492 lit/ year	1434.85	1.434
Petrol	1200 lit/ year	2724	2.724
	Total Category 1	10.495	

Table 10 Emissions of Category 1 for unit 2

4.2.2 Category 2

Indirect GHG emissions due to purchased electricity

Category	Consumption (kWh/ year)	Total emissions (kg CO2 eq./year)	Total emissions (t CO2 eq. /year)
Electricity	2559816	2334552.192	2334.55
	2334.55		

Table 11 Emissions of Category 2 for unit 2

4.2.3 Category 3

Indirect GHG emissions due to transportation

(a) Employee Commuting

Types of vehicles	No. of vehicles	Distance (Km/day)	Total (Km/year)	Total emission (t CO2 eq. /year)
Car	1	50	18250	3.218
2 wheeler	200	10	730000	30.441
Total emissions due to employee commuting (t CO ₂ eq./year)				33.659

(b) Raw material Transportation

Material type	Means of Transportation	Material transported (t- Km/year)	Total emissions(t CO2 eq. /year)
Raw materials	By road	2282616	384.849
Total emission	384.849		

Total emissions due to employee commuting	33.659 t CO ₂ eq./year	
Emissions due to raw material transportation	384.849 t CO ₂ eq./year	
Total Category 3 Emissions (t CO2 eq. /year)	1251.585 t CO2 eq./year	

Table 12 Emissions of Category 3 for unit 2

4.2.4 Category 4

Indirect GHG emissions from purchased goods and disposal of solid and liquid waste

(a) Purchased goods

Sr. No.	Raw material	Quantity (MT/year)	Total embodied carbon (Kg CO2 eq./ year)	Total embodied carbon (t CO2 eq./ year)
1	PP	1200000	2856000	2856
2	LDPE	168000	431760	431.76
3	LLDPE	960000	2227200	2227.2
5	MB	36000	208440	208.44
Emissions from purchased goods (t CO ₂ eq./year)				5723.4

(b) Liquid waste

Category	Quantity (m³/year)	Total emissions (t CO2 eq. /year)
Water supply	4380	0.657
Waste water generation	3285	0.894
Emissions due to waste w	1.551	

(c) Solid waste

Waste	Quantity (ton/ year)	Total emissions (kg CO2 eq. /year)	Total emissions (t CO2 eq. /year)
Solid waste	0.168	3.577	0.0036
Emissions due to solid waste generation (t CO ₂ eq./year)			0.0036

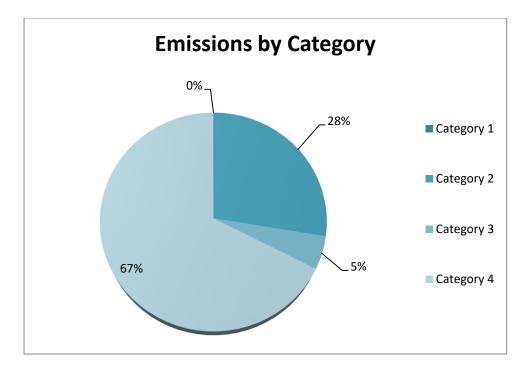

Total Category 4 Emissions (t CO ₂ eq. /year)	5724.955 t CO ₂ eq./year
Emissions due to solid waste generation	0.0036 t CO ₂ eq./year
Emissions due to water supply and waste water generation	1.551 t CO ₂ eq./year
Total emissions from purchased goods	5723.4 t CO ₂ eq./year

Table 13 Emissions of Category 4 for unit 2

4.2.5 Total emissions

Category	Emissions (t CO ₂ eq./year)
1	10.495
2	2334.55
3	418.508
4	5724.955
Total emissions (t CO2 eq. /year)	8488.508

Table 14 Total emissions for unit 2

Graph 2 Representation of emissions by category for unit 2

4.3 Unit 3- SEZ

4.3.1 Category 1

Direct GHG emissions due to fuel consumption

Fuel type	Fuel consumption	Total emissions(kg CO ₂ eq./year)	Total emissions (t CO2 eq. /year)
Diesel	21600 lit/ year	57024	57.024
LPG	5907 lit/ year	9197.73	9.197
Petrol	600 lit/ year	1362	1.363
Total Category 1 emissions (t CO2 eq. /year)			67.584

Table 15 Emissions of Category 1 for unit 3

4.3.2 Category 2

Indirect GHG emissions due to purchased electricity

Category	Consumption (kWh/ year)	Total emissions (kg CO ₂ eq./year)	Total emissions (t CO2 eq. /year)
Electricity	3833328	3495995.136	3496
	3496		

Table 16 Emissions of Category 2 for unit 3

4.3.3 Category 3

Indirect GHG emissions due to transportation

(a) Employee Commuting

Types of vehicles	No. of vehicles	Distance (Km/day)	Total (Km/year)	Total emission (t CO2 eq. /year)
Car	4	30	43800	7.722
2 wheeler	25	25	228125	9.513
Bus	5	20	36500	19.306
Total emissions due to employee commuting (t CO ₂				36.541

eq./year)	

(b) Raw material Transportation

Material type	Means of Transportation	Material transported (t- Km/year)	Total emissions(t CO2 eq. /year)
Raw materials	By road	22582800	3807.460
Total emissions due to raw material distribution			3807.460

Total Category 3 Emissions (t CO ₂ eq. /year)	3844.001 t CO ₂ eq./year
Emissions due to raw material transportation	3807.460 t CO ₂ eq./year
Total emissions due to employee commuting	$36.541 \text{ t} \text{CO}_2 \text{eq./year}$

Table 17 Emissions of Category 3 for unit 3

4.3.4 Category 4

Indirect GHG emissions from purchased goods and disposal of solid and liquid waste

(a) Purchased goods

Sr. No.	Raw material	Quantity (MT/year)	Total embodied carbon (Kg CO2 eq./ year)	Total embodied carbon (t CO2 eq./ year)
1	PP	3240000	7711200	7711.2
2	LDPE	108000	277560	277.56
3	LLDPE	60000	139200	139.2
4	RP	384000	190080	190.08
5	MB	480000	2779200	2779.2
	11097.24			

(b) Liquid waste

Category	Quantity (m³/year)	Total emissions (t CO2 eq. /year)
Water supply	7300	1.095
Waste water generation	2190	0.596
Emissions due to waste w	1.691	

(c) Solid waste

Waste	Quantity (ton/ year)	Total emissions (kg CO2 eq. /year)	Total emissions (t CO2 eq. /year)
Solid waste	1.779	37.882	0.038
Emissions due to solid waste generation (t CO ₂ eq./year)		0.038	

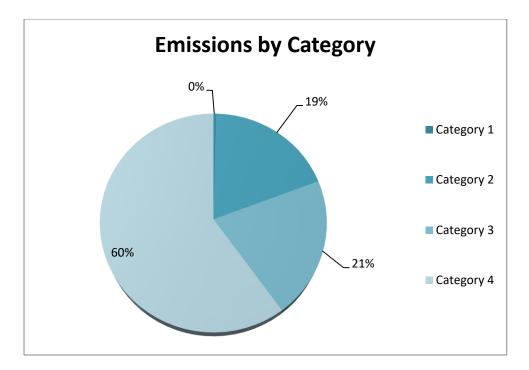

Total Category 4 Emissions (t CO ₂ eq. /year)	11098.969 t CO ₂ eq./year
Emissions due to solid waste generation	0.038 t CO ₂ eq./year
Emissions due to water supply and waste water generation	1.691 t CO ₂ eq./year
Total emissions from purchased goods	11097.24 t CO ₂ eq./year

Table 18 Emissions of Category 4 for unit 3

4.3.5 Total emissions

Category	Emissions (t CO ₂ eq./year)
1	67.584
2	3496
3	3844.001
4	11098.969
Total emissions (t CO2 eq. /year)	18506.554

Table 19 Total emissions for unit 3

Graph 3 Representation of emissions by category for unit 3

CHAPTER 5 GHG REDUCTION INITIATIVES AND AVOIDED EMISSIONS

The GHG reduction initiatives practiced are sequestration of carbon by tree plantation and avoiding emissions by using renewable source of energy. Both the initiatives are given below.

5.1Carbon Sequestration

At **Comsyn**, trees planted at unit 1, unit 2, and unit 3 (SEZ) are 130, 100, 250 respectively.

The total carbon sequestered through trees at unit 1(130 trees) =16.250 t CO₂ eq. /year

The total carbon sequestered through trees at unit 2(100 trees) =12.500 t CO₂ eq. /year

The total carbon sequestered through trees at unit 3 (SEZ) (250 trees) =31.250 t CO₂ eq.

/year

5.2 Avoided emissions

Avoided emissions due to use of renewable energy i.e. solar panels installed on unit 2 is considered. (Solar power plant of capacity 475 kWp)

Renewable energy source	Quantity /Year	Unit	Emissions(t CO2 eq./year)
Solar energy + wind mill	652500	kWh	600.300
Total Avoided Emissions (t CO ₂ eq./year)		600.300	

Table 20 Avoided emissions

CHAPTER 6 CONCLUSION

6.1 Unit 1

Category	Emissions (t CO2 eq. /year)	
Category 1	12.517	
Category 2	4325.83	
Category 3	1266.012	
Category 4	16308.553	
Gross emissions	21912.912	
Emission reduction	16.250	
Net emissions	21896.662	

The net emissions of Comsyn Unit 1are 21896.662 t CO2 eq. / year.

6.2 Unit 2

Category	Emissions (t CO2 eq. /year)
Category 1	10.495
Category 2	2334.55
Category 3	418.508
Category 4	5724.955
Gross emissions	8488.508
Emission reduction	612.8
Net emissions	7875.708

The net emissions of Comsyn Unit 2 are 7875.708 t CO2 eq. / year.

|--|

Category	Emissions (t CO2 eq. /year)	
Category 1	67.584	
Category 2	3496	
Category 3	3844.001	
Category 4	11098.969	
Gross emissions	18506.554	
Emission reduction	31.250	
Net emissions	18475.304	

- The net emissions of Comsyn unit 3 (SEZ) are 18475.304 t CO2 eq. / year.
- The total gross emissions of Comsyn i.e. Unit 1, Unit 2 and Unit 3 (SEZ) collectively are 48907.974 t CO2 eq. / year. The total emission reductions achieved by carbon sequestration and due to use of renewable source of energy are 660.30 t CO2 eq. / year.

Therefore, the total net emissions of Comsyn are 48247.674 t CO2 eq. / year. The total savings in emissions achieved are 1.35%.

	Net Emissions (t CO2 eq. /year)	Production in MT	CO2 emission per kg of FIBC
UNIT-1	21897	3098.30	7.07
UNIT-2	7876	8273.93	0.95
SEZ	18475	3381.70	5.46
Total	48248	14753.92	3.27

CHAPTER 7 RECOMMENDATIONS

- 1) Tree plantation should be increased to sequester more carbon.
- 2) The capacity of electricity generation by solar plant can be increased if space is available to reduce the emissions.
- 3) Carbon footprint study should be done every year to track greenhouse gases emission and to set target of GHG gases reduction for next year.